The RationalistSkip to content


We have registered
204.453.263 visits
There are 7364 articles   written by 1065 authors. They could occupy 29017 A4 pages

Search in sites:

Advanced search..

The latest sites..
Digests archive....

 How do you like that?
This rocks!
Well done
I don't mind
This sucks
  

Casted 2992 votes.
Chcesz wiedzieć więcej?
Zamów dobrą książkę.
Propozycje Racjonalisty:
Sklepik "Racjonalisty"
Agnieszka Zakrzewicz - Papież i kobieta
Friedrich Nietzsche - Antychryst
 Science » Astronomy

W pogoni za brązowym karłem [1]
Author of this text:

Czym jest tajemniczy obiekt zwany brązowym karłem? Jest masywniejszy niż planeta, ale jednocześnie jego masa jest o wiele mniejsza niż masa najmniejszej gwiazdy. Można go obrazowo porównać do niecałkiem uformowanej, jakby nieudanej gwiazdy. Często uważa się brązowe karły za ogniwo pośrednie pomiędzy gwiazdami a planetami, a konkretnie planetami olbrzymami takimi jak nasz Jowisz.

W jądrze gwiazd zachodzą procesy wyzwalające olbrzymie ilości energii podczas przemiany wodoru w hel. Aby ten proces w ogóle zaistniał temperatura jądra gwiazdy musi osiągnąć przynajmniej 3 miliony stopni kelvina. Temperatura jądra wzrasta wraz z ciśnieniem grawitacyjnym, tak więc minimalna masa obiektu to jakieś 75-80 razy więcej od masy Jowisza [ 1 ], czyli około 7-8% masy naszego Słońca. Jeśli masa protogwiazdy jest mniejsza od owego minimum, gaz w jej centrum nigdy nie będzie na tyle gorący ani gęsty, aby zapoczątkować procesy nuklearne. W ten naprawdę bardzo uproszczony sposób powstaje brązowy karzeł. Aż do ostatniej dekady brązowe karły istniały w zasadzie jako obiekty teoretyczne. Z powodu bowiem bardzo słabego światła jakie emitują były bardzo trudne do zaobserwowania. Lecz sukcesywnie naukowcy zdołali opracować specjalne metody badawcze ułatwiające namierzanie tych kosmicznych „stworzeń".

W 1963 roku astronom Shiv Kumar z Uniwersytetu Virginia wysunął teoretyczne założenie, iż ten sam proces grawitacyjnego kurczenia się, który formuje gwiazdy z obłoków pyłu i gazu, powinien także ukształtować i mniejsze obiekty. Te hipotetyczne ciała zostały ochrzczone mianem czarnych gwiazd lub gwiazd podczerwonych. Miano brązowego karła nadał im w 1975 roku astrofizyk Jill C. Tarter. Nazwa jest myląca, ponieważ brązowe karły w rzeczywistości emitują światło czerwone, lecz nazwa czerwony karzeł odnosiła się już do gwiazd o masie mniejszej niż połowa masy Słońca.

Od połowy lat 80-tych naukowcy intensywnie poszukują odpowiedzi na pytanie jak częstym są zjawiskiem o ile w ogóle istnieją. Trudność w obserwacji tych obiektów związana jest z bardzo słabym światłem jakie emitują. W typowej gwieździe zachodzą procesy termojądrowe, które jeśli już raz zaistnieją, utrzymują wielkość gwiazdy i jej jasność w stałej wielkości na ogół przez miliardy lat. Brązowy karzeł nie jest jednak w stanie podtrzymywać fuzji wodoru i jego jasność stopniowo ulega osłabieniu w miarę jak obiekt kurczy się i starzeje. Światło z takiej gwiazdy znajduje się głównie w podczerwonej partii spektrum. Ponieważ brązowe karły są słabsze od gwiazd i ich światło wraz z upływem czasu ulega dalszemu osłabieniu niektórzy naukowcy sądzili, iż są to główne ogniwa ciemnej materii, czyli tajemniczej niewidzialnej masy znacznie przewyższającej masę widocznych obiektów wszechświata.

Jak wobec tego prowadzić obserwacje takich słabych punktów o ile rzeczywiście istnieją? Więcej niż połowa gwiazd w naszej galaktyce to gwiazdy podwójne. Są to dwie gwiazdy okrążające wspólne dla nich centrum grawitacji. Spodziewano się, że niektóre gwiazdy widziane jako gwiazdy pojedyncze (np. Słońce) mogą w rzeczywistości posiadać brązowego karła jako towarzyszącą gwiazdę. Jedną z zalet tego założenia jest możliwość skoncentrowania się na małych obszarach nieba znajdujących się w pobliżu owych pojedynczych obiektów. Znacznym ułatwieniem jest też zastosowanie metody używanej przy poszukiwaniach planet z poza Układu Słonecznego. Badacze obserwują ich okresowe wpływy na ruchy gwiazd macierzystych. Ponieważ karzeł posiada większą masę niż planeta, może okazać się obiektem łatwiejszym do wykrycia. Oba te sposoby nie dały jednak oczekiwanych rezultatów. Odkrywane obiekty, o których sądzono iż są owymi niedokończonymi gwiazdami, okazywały się bardzo małymi gwiazdami względnie planetami gigantami.

Inna teoria opierała się na założeniu, że obiekty te są o wiele jaśniejsze w czasie swojej młodości, wobec tego należy ich poszukiwać w młodych gromadach gwiezdnych. Gwiazdy w takiej grupie uformowały się w tym samym czasie, lecz mają różny okres życia. Najbardziej masywne z nich żyją tylko przez kilka milionów lat zanim skończy się ich paliwo wodorowe, natomiast gwiazdy o mniejszej masie świecą nawet miliardy lat. Podstawową metodą do określenia wieku owej gromady jest znalezienie najbardziej masywnej gwiazdy głównego ciągu. [ 2 ] Jej wiek to jednocześnie wiek całego skupiska.

Skupisko młodych gwiazd. NASAW momencie zlokalizowania młodej gromady gwiezdnej i określeniu jej wieku obserwacje koncentrują się na najsłabszych, czerwonych czyli chłodnych obiektach. Teoria zakłada że spodziewana temperatura powierzchni i jasność obiektów różnych mas pokrywa się z odpowiednim wiekiem gwiazdy, stąd mierząc odpowiednie parametry można oszacować masę. Badania objęły przede wszystkim młode gwiezdne gromady takie jak obszar formowania się gwiazd w konstelacji Byka i najjaśniejszą gromadę gwiazd, Plejady. Zwane inaczej Siedmioma Siostrami lub M45 są najbliższą nas tzw. otwartą gromadą. Zawierają ponad 3000 obiektów na przestrzeni 13 lat świetlnych. Ważną cechą gwiazd wchodzących w skład takiej gromady jest to, iż uformowały się mniej więcej w tym samym czasie z tego samego obłoku gazowego. I co jest szczególnie interesujące wszystkie zlokalizowane są prawie w tej samej odległości od nas. Gwiazdy tworzące to skupisko to głównie niebieskie olbrzymy. Mimo początkowych nadziei poszukiwania nie dały wiarygodnych rezultatów. Większość kandydatów do miana brązowego karła okazała się albo czerwonym gigantem zlokalizowanym tysiące lat za gromadą, względnie gwiazdami o bardzo małej masie znajdującymi się za lub z przodu skupiska. Wszystkie te niepowodzenia utwierdziły wiarę uczonych w niezwykłą rzadkość tego zjawiska.

Plejady. NASA

W 1992 roku grupa naukowców opracowała nową metodę pozwalającą rozróżniać gwiazdy o małej masie od brązowych karłów. Zaproponował ją Rafael Rebolo, Eduardo L.Martin i Antonio Magazzu z Instytutu Astrofizyki z hiszpańskich Wysp Kanaryjskich. Nowa metoda otrzymała miano testu litu. Wykorzystuje ona fakt, że poniżej masy wynoszącej około 60 mas Jowisza brązowy karzeł nigdy nie spełni warunków potrzebnych do fuzji litu wewnątrz swojego jądra. Ta nuklearna reakcja zachodzi w nieco niższej temperaturze niż przemiana wodoru, zatem gwiazdy bardzo szybko spalają wszelkie zapasy litu jakie początkowo posiadały. W czasie tej reakcji proton zderza się z izotopem litu 7, który ulega następnie rozszczepieniu na dwa atomy helu. Nawet gwiazdy o małej masie spalą cały swój lit w przeciągu około 100 milionów lat, zaś większość nawet masywnych brązowych karłów zachowa go na zawsze. Tak więc obecność litu w spektrum miałaby świadczyć o bardzo niskiej masie obiektu. Linie spektrum wytworzone przez lit są znacznie wyraźniejsze w chłodnych, czerwonych obiektach.

Przy użyciu nowego 10-cio metrowego teleskopu Keck na Mauna Kea na Hawajach [ 3 ] astronomowie znów skupili się na Plejadach, które, jak wykazały obliczenia, liczą sobie jakieś 120 milionów lat, czyli są bardzo młodą gromadą gwiezdną. Badając spektrum na obecność litu, znaleziono brązowego karła oznaczonego symbolem PPI 15. W tej samej gromadzie gwiezdnej wykryto również nawet znacznie słabsze obiekty niż PPI 15: Teide 1 oraz Calar 3. Oba obiekty posiadają masę prawie poniżej 60 mas jowiańskich i wyraźną obecność litu w spektrum.

Podobna metoda została zastosowana również przy badaniu obiektu towarzyszącego gwieździe Gliese 229A. Zalicza się ona do kategorii czerwonych karłów i sama jako taka emituje dosyć słabe światło. Obiekt ten został odkryty przez zastosowanie specjalnego instrumentu blokującego większość światła z Gliese 229A, co umożliwiło zaobserwowanie mniejszej i słabszej około 1000 razy gwiazdy towarzyszącej. Co więcej, w badanym spektrum zostały wykryte ślady metanu, który co prawda jest pospolity w atmosferze planet olbrzymów, lecz gwiazdy są obiektami zbyt gorącymi, aby mógł się uformować. Jego wyraźna obecność w spektrum Gliese 229B [ 4 ] stanowiła potwierdzenie hipotezy, iż nie jest to gwiazda lecz prawdopodobnie brązowy karzeł. Oprócz metanu można również zauważyć obecność wody w postaci bardzo rozgrzanej pary. Zarówno metan jak i woda nie występuje w środowisku przeciętnych gwiazd takich jak Słońce. Większość naukowców uznała Gliese 229B za pierwszego prawdziwego brązowego karła. Jest to obiekt o temperaturze powierzchni oscylującej prawdopodobnie poniżej 1000 stopni kelvina, dla porównania minimalna temperatura powierzchni najsłabszych gwiazd to 1800 stopni. Gliese 229B jest 30-40 razy masywniejsza niż Jowisz i prawdopodobnie liczy sobie kilka miliardów lat czyli znajduje się obecnie w fazie schyłkowej.

Czerwony karzeł Gliese 229A, w tle brązowy karzeł Gliese 229B.
NASAStosując odpowiednie pomiary naukowcy zdołali obliczyć prawdopodobną liczbę brązowych karłów. Jak wynika z tych obliczeń, w samej tylko Drodze Mlecznej może być ich nawet prawie 100 miliardów. Jednakże początkowe nadzieje związane z tajemnicą ciemnej materii rozwiały się. Brązowe karły, mimo iż występowałyby dosyć licznie we wszechświecie, z racji swojej niewielkiej masy nie stanowią liczącej się wielkości potrzebnej do wytłumaczenia zjawiska ciemnej materii. Wraz z białymi karłami i czarnymi dziurami mogą stanowić jakiś niewielki ułamek ciemnej materii. Przypuszczalnie jednak cała reszta jest całkowicie nowym, nieznanym nam rodzajem materii, której na razie nie umiemy wykryć. Niektórzy naukowcy spekulują, że może być to materia z innych wymiarów.

W jaki sposób powstają i jaki jest ich cykl życia? Prawdopodobnie zarówno brązowy karzeł jak i typowa gwiazda formują się podczas grawitacyjnego zapadnięcia się międzygwiezdnego obłoku pyłowo-gazowego. Obłoki takie zawierają w większości wodór i hel, lecz mogą też posiadać niewielkie ilości deuteru i litu. Pierwiastki te są pozostałościami nuklearnych reakcji jakie odbywały się kilka minut po Wielkim Wybuchu. W miarę jak kształtują się owe obiekty, ich jądra stają się coraz gorętsze i gęściejsze, aż w końcu temperatura jądra umożliwia zapoczątkowanie przemiany deuteru w hel. Ten proces może przebiegać w brązowym karle gdyż temperatura niezbędna do niego jest niższa od temperatury wymaganej do fuzji wodoru. Niższa może być również masa obiektu. Efektem tych reakcji jest energia i światło jakie zaczyna emitować gwiazda. Jednocześnie zostaje zahamowany proces grawitacyjnego zagęszczania się. Jednakże po kilku milionach lat cały deuter ulega wyczerpaniu i rozpoczyna się ponowny proces kurczenia się. Zaczyna się też fuzja litu w młodych gwiazdach i brązowych karłach masywniejszych 60 razy więcej niż Jowisz.


1 2 Dalej..

 Po przeczytaniu tego tekstu, czytelnicy często wybierają też:
Gruby włos
Rodzaje i ewolucja gwiazd

 See comments (3)..   


 Footnotes:
[ 1 ] Jowisz jest tzw. planetą gigantem w naszym systemie słonecznym. Jest prawie dwa razy masywniejszy niż wszystkie inne planety systemu razem wzięte (dotychczasowo znane). Czasem wraz ze swoimi licznymi księżycami których jak na dzień dzisiejszy jest 63(!) jest nazywany mini-systemem słonecznym. Jego skład pierwiastkowy przypomina małą gwiazdę. Zbudowany głównie z wodoru i helu, posiada atmosferę wodorowo-azotowo-węglową, w której tworzy się amoniak i metan.
[ 2 ] U gwiazd z głównej sekwencji energia wytwarzana jest poprzez reakcję spalania wodoru w jądrze. W górnej partii znajdują się masywne gwiazdy o wielkości 60 mas solarnych. Dolna część to gwiazdy o małej masie, około 0.08 masy Słońca. Słońce to przeciętna gwiazda, znajdująca się pośrodku.
[ 3 ] Badania prowadzili między innymi Goeffrey W. Marcy, Gibor Basri, James R. Graham.
[ 4 ] Odkrycie to zostało dokonane przy użyciu 1,5 metrowego teleskopu w Palomar Observatory przez zespół California Institute of Technology i Johns Hopkins University.

« Astronomy   (Published: 16-10-2004 Last change: 13-02-2011)

 Send text to e-mail address..   
Print-out version..    PDF    MS Word

Agnieszka Dutka
Współredaktorka Nowin naukowych Racjonalisty. Z wykształcenia pedagog. Prowadzi biuro tłumaczeń języka angielskiego. Jej pasje to astronomia, astrofizyka oraz biologia, zwłaszcza paleo. Mieszka w Chicago.

 Number of texts in service: 2  Show other texts of this author
 Newest author's article: Kiedy powstały pierwsze gwiazdy
All rights reserved. Copyrights belongs to author and/or Racjonalista.pl portal. No part of the content may be copied, reproducted nor use in any form without copyright holder's consent. Any breach of these rights is subject to Polish and international law.
page 3682 
   Want more? Sign up for free!
[ Cooperation ] [ Advertise ] [ Map of the site ] [ F.A.Q. ] [ Store ] [ Sign up ] [ Contact ]
The Rationalist © Copyright 2000-2018 (English section of Polish Racjonalista.pl)
The Polish Association of Rationalists (PSR)